剖析DeFi交易产品之UniswapV3:工厂合约

本文首发于公众号:Keegan小钢


UniswapV3Factory 合约主要用来创建不同代币对的流动性池子合约,其代码实现并不复杂,以下就是代码实现:

contract UniswapV3Factory is IUniswapV3Factory, UniswapV3PoolDeployer, NoDelegateCall {
    address public override owner;

    mapping(uint24 => int24) public override feeAmountTickSpacing;
    mapping(address => mapping(address => mapping(uint24 => address))) public override getPool;

    constructor() {
        owner = msg.sender;
        emit OwnerChanged(address(0), msg.sender);
        // 初始化支持的费率以及对应的tickSpacing
        feeAmountTickSpacing[500] = 10;
        emit FeeAmountEnabled(500, 10);
        feeAmountTickSpacing[3000] = 60;
        emit FeeAmountEnabled(3000, 60);
        feeAmountTickSpacing[10000] = 200;
        emit FeeAmountEnabled(10000, 200);
    }

    function createPool(
        address tokenA,
        address tokenB,
        uint24 fee
    ) external override noDelegateCall returns (address pool) {
        require(tokenA != tokenB);
        // 对两个token进行排序,小的排前面
        (address token0, address token1) = tokenA < tokenB ? (tokenA, tokenB) : (tokenB, tokenA);
        require(token0 != address(0));
        int24 tickSpacing = feeAmountTickSpacing[fee];
        require(tickSpacing != 0); //为0则说明该费率并不支持
        require(getPool[token0][token1][fee] == address(0));
        // 实际的部署新池子函数
        pool = deploy(address(this), token0, token1, fee, tickSpacing);
        // 两个方向的token都存储,方便查询
        getPool[token0][token1][fee] = pool;
        getPool[token1][token0][fee] = pool;
        emit PoolCreated(token0, token1, fee, tickSpacing, pool);
    }

    function setOwner(address _owner) external override {
        require(msg.sender == owner);
        emit OwnerChanged(owner, _owner);
        owner = _owner;
    }

    function enableFeeAmount(uint24 fee, int24 tickSpacing) public override {
        require(msg.sender == owner);
        require(fee < 1000000);
        // tick spacing is capped at 16384 to prevent the situation where tickSpacing is so large that
        // TickBitmap#nextInitializedTickWithinOneWord overflows int24 container from a valid tick
        // 16384 ticks represents a >5x price change with ticks of 1 bips
        require(tickSpacing > 0 && tickSpacing < 16384);
        require(feeAmountTickSpacing[fee] == 0);

        feeAmountTickSpacing[fee] = tickSpacing;
        emit FeeAmountEnabled(fee, tickSpacing);
    }
}

UniswapV3Factory 除了继承其 interface IUniswapV3Factory 之外,还继承了另外两个合约 UniswapV3PoolDeployerNoDelegateCall。这两个合约后面再讲,先来看看构造函数。构造函数除了初始化 owner 之外,最主要就是初始化 feeAmountTickSpacing 状态变量。这个变量是用来存储支持的交易手续费率的配置的,key 代表费率,value 代表 tickSpacing。初始的费率值分别设为了 500、3000、10000,分别代表了 0.05%、0.3%、1%。tickSpacing 的概念需要解释一下。

当添加流动性时,虽然 UI 交互上选择的是一个价格区间,但实际调用合约时,传入的参数其实是一个 tick 区间。而如果低价或/和高价的 tick 还没有被已存在的头寸用作边界点时,该 tick 将被初始化。tickSpacing 就是用来限制哪些 tick 可以被初始化的。只有那些序号能够被 tickSpacing 整除的 tick 才能被初始化。当 tickSpacing = 10 的时候,则只有可以被 10 整除的 tick (…, -30, -20, -10, 0, 10, 20, 30, …) 才可以被初始化;当 tickSpacing = 200 时,则只有可以被 200 整除的 tick (…, -600, -400, -200, 0, 200, 400, 600, …) 才可被初始化。tickSpacing 越小,则说明可设置的价格区间精度越高,但可能会使得每次交易时损耗的 gas 也越高,因为每次交易穿越一个初始化的 tick 时,都会给交易者带来 gas 消耗。

为了更直观地理解 tickSpacing,我再用更具体的示例进行说明。我们知道,在 UniswapV2 中,在智能合约层面,价格精度其实可以达到 18 位小数,交易精度是可以非常小的。但是,在中心化交易所,不同代币的价格精度则是不一样的,比如 BTC 和 ETH 的价格精度大多为两个小数,MEME 的精度为 6 位小数,SHIB 的精度则为 8 位小数,这个价格精度也就是价格的最小变动单位,BTC 和 ETH 的最小变动单位为 0.01,SHIB 的最小变动单位为 0.00000001。类似地,tickSpacing 可以理解为就是 tick 变动的最小单位。而我们知道,每一个 tick 其实也对应了每一个价格点,因此 tickSpacing 其实和中心化交易所的价格精度类似,是用于限制每个池子的最小价格变动范围的。也因此,当你在 Uniswap 官网上添加流动性时,当你输入的区间价格为整数时,比如 1700,最终会变成 1699.4004,就是因为 1699.4004 才是符合 tickSpacing 限制的有效价格点。

从构造函数中可看出,三个不同费率对应的 tickSpacing 分别为 10、60 和 200。费率越高,tickSpacing 越高,即是说,费率越高,价格变动的最小单位也越高。

在 2021 年 11 月通过 DAO 治理增加了另一个手续费率配置,费率为 0.01%,tickSpacing 为 1,是通过调用了 enableFeeAmount 函数添加的。该函数只有 owner 才有权限调用,而 owner 其实是个 Timelock 合约。

createPool 是最核心的创建新池子的函数,其三个入参就是组成一个池子唯一性的 tokenAtokenBfee。代码实现里,各种 require 的检验都非常好理解,而实际的创建池子逻辑其实封装在了 deploy 内部函数里,而这个函数是在 UniswapV3PoolDeployer 合约中实现的。deploy 函数返回 pool 后,会存储到 getPool 状态变量里。

下面,来看看 UniswapV3PoolDeployer 合约实现,其代码如下:

contract UniswapV3PoolDeployer is IUniswapV3PoolDeployer {
    struct Parameters {
        address factory;
        address token0;
        address token1;
        uint24 fee;
        int24 tickSpacing;
    }

    Parameters public override parameters;

    function deploy(
        address factory,
        address token0,
        address token1,
        uint24 fee,
        int24 tickSpacing
    ) internal returns (address pool) {
        parameters = Parameters({factory: factory, token0: token0, token1: token1, fee: fee, tickSpacing: tickSpacing});
        pool = address(new UniswapV3Pool{salt: keccak256(abi.encode(token0, token1, fee))}());
        delete parameters;
    }
}

这套代码还是比较有意思的。首先,其定义了结构体 Parameters 和该结构体类型的状态变量 parameters。然后,在 deploy 函数里,先对 parameters 进行赋值,接着通过 new UniswapV3Pool 部署了新池子合约,使用 token0、token1 和 fee 三个字段拼接的哈希值作为盐值。最后再将 parameters 删除。总共就三行代码。但其中有两个用法,是在以前的项目中还没出现过的。

第一,使用 new UniswapV3Pool 部署新合约时,还可以指定 salt。这其实也是 create2 的一种新写法,相比于 UniswapV2Factory 中使用内联汇编的方式,明显简化了很多。

第二,parameters 其实是传给 UniswapV3Pool 的参数,在 UniswapV3Pool 的构造函数里,是如下所示来接收这些参数的:

constructor() {
    int24 _tickSpacing;
    (factory, token0, token1, fee, _tickSpacing) = IUniswapV3PoolDeployer(msg.sender).parameters();
    tickSpacing = _tickSpacing;

    maxLiquidityPerTick = Tick.tickSpacingToMaxLiquidityPerTick(_tickSpacing);
}

可见,其实就是通过调用了 IUniswapV3PoolDeployer(msg.sender).parameters() 来获取到几个参数。其中,msg.sender 其实就是工厂合约。

看了这段代码才明白,原来合约间传递参数还可以这么用。

回到 UniswapV3Factory 合约的 createPool 函数,函数体里还有加了 noDelegateCall 的函数修饰器,这是在 NoDelegateCall 抽象合约中定义的。以下是 NoDelegateCall 的代码实现:

abstract contract NoDelegateCall {
    /// @dev The original address of this contract
    address private immutable original;

    constructor() {
        // Immutables are computed in the init code of the contract, and then inlined into the deployed bytecode.
        // In other words, this variable won't change when it's checked at runtime.
        original = address(this);
    }

    /// @dev Private method is used instead of inlining into modifier because modifiers are copied into each method,
    ///     and the use of immutable means the address bytes are copied in every place the modifier is used.
    function checkNotDelegateCall() private view {
        require(address(this) == original);
    }

    /// @notice Prevents delegatecall into the modified method
    modifier noDelegateCall() {
        checkNotDelegateCall();
        _;
    }
}

这其实就是为了阻止用 delegatecall 来调用所修饰的函数。当使用 delegatecall 调用 createPool 函数的时候,那 address(this) 将是发起 delegatecall 的地址,而不是当前的工厂合约地址。

至此,我们就讲解完了 UniswapV3 的工厂合约。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/773973.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

AIGC时代,“人”的核心价值在何处?

随着科技的浪潮汹涌向前&#xff0c;人工智能生成内容&#xff08;AIGC&#xff09;已悄然渗透至我们生活的每一个角落&#xff0c;从创意设计到信息传播&#xff0c;其影响力与变革力愈发显著。在这一由算法驱动的新纪元里&#xff0c;人类社会运作模式、学习途径及职业形态均…

眼动追踪技术 | 眼动的分类和模型

摘要 灵长类动物用于调整中央凹位置的正常眼动&#xff0c;几乎都可以归结为五种基本类型的组合&#xff1a;扫视、平稳追踪、聚散、前庭眼震和生理性眼震(与注视相关的微小运动)。聚散运动用于将双眼聚焦于远处的目标(深度知觉)。其他运动(如适应和聚焦)指的是眼动的非位置变…

LMT加仿真,十一届大唐杯全国总决赛

这次省赛带了太多个省一了&#xff0c;并且很多都进入了国赛总决赛&#xff0c;具体可看下面的图片&#xff0c;只放了一部分。目前只有B组是只有一个商用设备赛也就是LMT&#xff0c;A组和高职组都是仿真实践赛加上商用设备赛。 针对商用设备赛有对应的资料&#xff…

【深度学习】第3章——回归模型与求解分析

一、回归分析 1.定义 分析自变量与因变量之间定量的因果关系&#xff0c;根据已有的数据拟合出变量之间的关系。 2.回归和分类的区别和联系 3.线性模型 4.非线性模型 5.线性回归※ 面对回归问题&#xff0c;通常分三步解决 第一步&#xff1a;选定使用的model&#xff0c;…

CFS三层内网渗透——第二层内网打点并拿下第三层内网(三)

目录 八哥cms的后台历史漏洞 配置socks代理 ​以我的kali为例,手动添加 socks配置好了&#xff0c;直接sqlmap跑 ​登录进后台 蚁剑配置socks代理 ​ 测试连接 ​编辑 成功上线 上传正向后门 生成正向后门 上传后门 ​内网信息收集 ​进入目标二内网机器&#xf…

SAP-SD同一物料下单价格确不同

业务说明&#xff1a; 业务部门反馈&#xff0c;同一物料下销售订单时&#xff0c;价格确不同。 那么这个价格是怎么取到的呢&#xff1f; 逻辑说明&#xff1a; 1、首先查看销售订单 可以看到相同物料价格是不同的&#xff0c;条件类型都是ZPR5&#xff0c;但是客户是不同…

相关款式1111

一、花梨木迎客松 1. 风速打单 发现只有在兄弟店铺有售卖 六月份成交订单数有62笔 2. 生意参谋 兄弟店铺商品访客数&#xff1a;3548&#xff0c;支付件数&#xff1a;95件 二. 竹节茶刷&#xff08;引流&#xff09; 1. 风速打单 六月订单数有165笔 兄弟&#xff1a;…

揭秘数据之美:【Seaborn】在现代【数学建模】中的革命性应用

目录 已知数据集 tips 生成数据集并保存为CSV文件 数据预览&#xff1a; 导入和预览数据 步骤1&#xff1a;绘制散点图&#xff08;Scatter Plot&#xff09; 步骤2&#xff1a;添加回归线&#xff08;Regression Analysis&#xff09; 步骤3&#xff1a;分类变量分析&…

Mall,正在和年轻人重新对话

【潮汐商业评论/原创】 结束了一下午的苦闷培训&#xff0c;当Cindy赶到重庆十字大道时&#xff0c;才发现十字路口上的巨大“飞行棋”在前两天就已经撤展了。 “来了又错过&#xff0c;就会觉得遗憾&#xff0c;毕竟这样的路口不多&#xff0c;展陈又不可能会返场。” 飞行棋…

藏文作文写作业推荐什么学习工具?《藏文翻译词典》App值得你使用,一款好用准确的藏语词汇查询辞典!

探索藏语的奥秘&#xff0c;体验藏族文化的魅力&#xff0c;尽在《藏文翻译词典》App。这款App是藏汉翻译的神器&#xff0c;也是藏语学习者的必备工具。在学习过程中遇到不会的藏语单词&#xff0c;可以使用《藏文翻译词典》App进行查询&#xff01; 主要特性&#xff1a; 藏…

SCT612404通道,高效高集成,摄像头模组电源集成芯片

集成三路降压变换器&#xff0c;1CH高压BUCK,2CH低压Buck >HVBuck1:输入电压4.0V-20V,输出电流1.2A,Voo300mV/500mV >LVBuck2:输入电压2.7V-5V,输出电流0.6A , 固定1.8V输出 ;LVBuck3:输λ2.7V-5V,输出电流1.2A,可设定固定输出&#xff1a; 1 . 1 V / 1 . 2 V / 1 . 3 …

Intellj idea无法启动

个人电脑上安装的是2024.01版本的intellj idea作为开发工具&#xff0c;引入了javaagent作为工具包 但是在一次invaliad cache操作后&#xff0c;intellj idea就无法启动了&#xff0c;双击无响应。 重装了idea后也无效&#xff08;这个是有原因的&#xff0c;下面会讲&#…

开发人员使用的10大主流任务进度管理工具

本文将分享10大优质任务管理软件&#xff1a;Worktile、PingCode、Asana、Todoist、ClickUp、HubSpot Task Management、Hitask、Smartsheet、ProjectManager、Microsoft To Do。 任务管理软件不仅帮助个人和团队跟踪日常任务&#xff0c;还优化了工作流程&#xff0c;确保项目…

Linux/Ubuntu访问局域网共享文件夹

文件夹中找到“Other Location”&#xff0c;输入“smb:IP地址/共享文件夹名称”&#xff0c;然后点击connect后者直接回车即可&#xff01; End&#xff01;

Redis 主从,哨兵,cluster集群

概述 主从复制 主从复制是高可用Redis的基础&#xff0c;哨兵和集群都是在主从复制基础上实现高可用的。 主从复制主要实现了数据的多机备份&#xff0c;以及对于读操作的负载均衡和简单的故障恢复。 缺陷&#xff1a;故障恢复无法自动化&#xff1b;写操作无法负载均衡&am…

联合查询(多表查询)

多表查询是对多张表的数据取笛卡尔积&#xff08;关联查询可以对关联表使用别名&#xff09; 数据准备 insert into classes(name, desc) values (计算机系2019级1班, 学习了计算机原理、C和Java语言、数据结构和算法), (中文系2019级3班,学习了中国传统文学), (自动化2019级5…

Mysql 的第二次作业

一、数据库 1、登陆数据库 2、创建数据库zoo 3、修改数据库zoo字符集为gbk 4、选择当前数据库为zoo 5、查看创建数据库zoo信息 6、删除数据库zoo 1&#xff09;登陆数据库。 打开命令行&#xff0c;输入登陆用户名和密码。 mysql -uroot -p123456 ​ 2&#xff09;切换数据库…

前端修改audio背景色

1.查看浏览器设置Show user agent shadow DOM是否打开 2.打开可以查看audio Dom /** 去掉默认的背景颜色 */ audio::-webkit-media-controls-enclosure{background-color:unset; } 3.效果图

浅谈OpenCV的多对象匹配透明图像的实现,以及如何匹配半透明控件

引子 OpenCV提供的templateMatch只负责将&#xff08;相关性等&#xff09;计算出来&#xff0c;并不会直接提供目标的对应坐标&#xff0c;一般来说我们直接遍历最高的相关度&#xff0c;就可以得到匹配度最高的坐标。但是这样一般只能得到一个坐标。在实际操作中&#xff0c;…

边缘计算赋能:高效固体废物管理的ARMxy工业计算机实践

固体废物处理成为城市管理与环境保护的重要议题。传统处理方式效率低下且环境污染风险高&#xff0c;迫切需要智能化、高效化的解决方案。在此背景下&#xff0c;基于ARM架构的工业计算机以其低功耗、高性能及高度可定制性&#xff0c;正逐渐成为智能固体废物处理系统的核心驱动…